Spline interpolation is a powerful technique for estimating values between known data points. It uses piecewise polynomials to create smooth curves that pass through each data point, offering flexibility and accuracy compared to simple polynomial interpolation. Cubic spline interpolation is the most common type, balancing smoothness and efficiency. This method divides the interval into subintervals, fitting separate polynomials while ensuring continuity and smoothness at boundaries. It's widely used in computer graphics, data visualization, and scientific computing.
Pros:
Cons:
scipy.interpolate
module provides classes like InterpolatedUnivariateSpline
and CubicSpline
spline
and interp1
functions for spline interpolationscipy.interpolate
:
from scipy.interpolate import CubicSpline x = [0, 1, 2, 3, 4] y = [1, 2, 1, 3, 2] cs = CubicSpline(x, y) x_new = np.linspace(0, 4, 100) y_new = cs(x_new)