Proof Theory
Gödel's Completeness Theorem states that in first-order logic, every logically valid formula can be proven using a formal proof system. This theorem establishes a connection between semantic truth (truth in every model) and syntactic provability (provable from axioms), showing that if a statement is true in every model, then there is a formal proof of that statement within the system. It plays a significant role in understanding the foundational aspects of mathematical logic and formal systems.
congrats on reading the definition of Gödel's Completeness Theorem. now let's actually learn it.