Noncommutative Geometry
Homotopy invariance is a property of mathematical structures that remain unchanged under continuous transformations, known as homotopies. This concept is crucial in topology and plays a significant role in the study of various geometric and algebraic structures, especially in the context of characterizing and analyzing noncommutative spaces. Homotopy invariance ensures that certain characteristics, such as the Connes-Chern character and the index of operators, do not change even if the underlying space undergoes deformation.
congrats on reading the definition of homotopy invariance. now let's actually learn it.