study guides for every class

that actually explain what's on your next test

Divisor

from class:

College Algebra

Definition

A divisor is a polynomial that divides another polynomial, known as the dividend, without leaving a remainder. In algebraic terms, if $f(x)$ and $g(x)$ are polynomials, then $g(x)$ is a divisor of $f(x)$ if $f(x) = g(x) \cdot q(x) + r(x)$ and $r(x) = 0$.

congrats on reading the definition of divisor. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. A polynomial division results in a quotient and possibly a remainder.
  2. The degree of the divisor must be less than or equal to the degree of the dividend for valid polynomial division.
  3. Synthetic division can be used when the divisor is of the form $(x - c)$. It simplifies calculations compared to long division.
  4. Remainder Theorem: If a polynomial $f(x)$ is divided by $(x - c)$, the remainder is $f(c)$.
  5. In polynomial long division, each step involves dividing the leading term of the dividend by the leading term of the divisor.

Review Questions

  • What happens to the remainder if one polynomial is perfectly divisible by another?
  • How does synthetic division differ from traditional polynomial long division?
  • What does the Remainder Theorem state about dividing polynomials?
© 2025 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides