study guides for every class

that actually explain what's on your next test

Upper sum

from class:

Calculus I

Definition

An upper sum is an approximation of the area under a curve using the sum of areas of rectangles that lie above the curve over each subinterval. The height of each rectangle is determined by the maximum value of the function within that subinterval.

congrats on reading the definition of upper sum. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. Upper sums provide an overestimate of the area under a curve when approximating definite integrals.
  2. The height of each rectangle in an upper sum is determined by the supremum (maximum) value of the function on that interval.
  3. To calculate an upper sum, partition the interval into smaller subintervals and use the maximum function values within each subinterval to determine the heights.
  4. Upper sums are part of Riemann sums, which also include lower sums, where lower sums use infimum (minimum) values for heights.
  5. As the number of partitions increases (and their width decreases), the upper sum approaches the actual value of the definite integral if the function is integrable.

Review Questions

  • What determines the height of each rectangle in an upper sum?
  • How does increasing the number of partitions affect an upper sum calculation?
  • Why do upper sums generally overestimate areas under curves?

"Upper sum" also found in:

ยฉ 2025 Fiveable Inc. All rights reserved.
APยฎ and SATยฎ are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides