Calculus I

study guides for every class

that actually explain what's on your next test

Removable discontinuity

from class:

Calculus I

Definition

A removable discontinuity occurs when a function has a hole at a particular point, which can be 'fixed' by redefining the function at that point. This happens when the limit of the function as it approaches the point exists but is not equal to the function's value at that point.

congrats on reading the definition of removable discontinuity. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. Removable discontinuities are characterized by holes in the graph of a function.
  2. They occur when $\lim_{{x \to c}} f(x)$ exists, but $f(c)$ is either undefined or not equal to this limit.
  3. To remove a discontinuity, redefine $f(c)$ to be equal to $\lim_{{x \to c}} f(x)$.
  4. Removable discontinuities do not affect the overall behavior of a function significantly and are considered less severe than other types of discontinuities.
  5. Identifying removable discontinuities often involves factoring and simplifying rational functions.

Review Questions

  • What conditions must be met for a discontinuity to be considered removable?
  • How can you 'fix' a removable discontinuity in a function?
  • Why are removable discontinuities considered less severe than other types of discontinuities?
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides