Analytic Number Theory
Dirichlet's Theorem states that there are infinitely many prime numbers in any arithmetic progression of the form $$a + nd$$, where $$a$$ and $$d$$ are coprime integers (i.e., the greatest common divisor of $$a$$ and $$d$$ is 1). This theorem has significant implications for number theory, as it shows that primes are not just confined to the first few integers, but rather are distributed throughout the natural numbers in a structured way.
congrats on reading the definition of Dirichlet's Theorem on Primes in Arithmetic Progressions. now let's actually learn it.