Advanced Quantitative Methods
AIC, or Akaike Information Criterion, is a measure used for model selection that evaluates how well a model fits the data while penalizing for complexity. It helps in comparing different statistical models, where a lower AIC value indicates a better fit with fewer parameters. This criterion is widely used in various regression techniques, including logistic regression, robust estimation, mixed-effects models, and regression diagnostics.
congrats on reading the definition of AIC. now let's actually learn it.