All Study Guides Honors Pre-Calculus Unit 5 โ Trigonometric Functions
๐ Honors Pre-Calculus Unit 5 โ Trigonometric FunctionsTrigonometric functions are the backbone of advanced mathematics, connecting geometry and algebra. They describe relationships between angles and sides in triangles, forming the basis for understanding circular motion and periodic phenomena.
The unit circle is key to grasping these functions. It helps visualize sine, cosine, and tangent, and their relationships. Mastering the unit circle unlocks deeper understanding of trigonometric identities, equations, and real-world applications in physics and engineering.
Study Guides for Unit 5 โ Trigonometric Functions Key Concepts and Definitions
Trigonometry studies relationships between side lengths and angles in triangles
Sine, cosine, and tangent are the primary trigonometric functions
Sine (sin โก \sin sin ) is the ratio of the opposite side to the hypotenuse
Cosine (cos โก \cos cos ) is the ratio of the adjacent side to the hypotenuse
Tangent (tan โก \tan tan ) is the ratio of the opposite side to the adjacent side
Cosecant (csc โก \csc csc ), secant (sec โก \sec sec ), and cotangent (cot โก \cot cot ) are reciprocal functions of sine, cosine, and tangent, respectively
Radian measure expresses angles in terms of ฯ \pi ฯ and the radius of a circle
The unit circle has a radius of 1 and is centered at the origin (0, 0)
Trigonometric identities are equations that are true for all values of the variable for which both sides are defined
Angles and Radian Measure
Angles can be measured in degrees or radians
One radian is the angle subtended by an arc length equal to the radius of the circle
To convert from degrees to radians, multiply by ฯ 180 \frac{\pi}{180} 180 ฯ โ
To convert from radians to degrees, multiply by 180 ฯ \frac{180}{\pi} ฯ 180 โ
Angles in the coordinate plane can be positive (counterclockwise) or negative (clockwise)
Coterminal angles are angles that share the same terminal side (differ by multiples of 360ยฐ or 2ฯ \pi ฯ radians)
Reference angles are acute angles formed by the terminal side of an angle and the x-axis
The Unit Circle
The unit circle is a circle with a radius of 1 centered at the origin (0, 0)
Angles in the unit circle are measured in radians, with 0 radians at (1, 0) and increasing counterclockwise
The coordinates of a point on the unit circle are (cos ฮธ \theta ฮธ , sin ฮธ \theta ฮธ ), where ฮธ \theta ฮธ is the angle from the positive x-axis
The sine and cosine values for common angles (0, ฯ 6 \frac{\pi}{6} 6 ฯ โ , ฯ 4 \frac{\pi}{4} 4 ฯ โ , ฯ 3 \frac{\pi}{3} 3 ฯ โ , ฯ 2 \frac{\pi}{2} 2 ฯ โ ) can be derived from the unit circle
Symmetry in the unit circle helps determine the signs of trigonometric functions in different quadrants
Sine is positive in quadrants I and II, negative in III and IV
Cosine is positive in quadrants I and IV, negative in II and III
Tangent is positive in quadrants I and III, negative in II and IV
Trigonometric Functions and Their Graphs
Sine, cosine, and tangent functions are periodic, meaning they repeat at regular intervals
The sine function (y = sin โก x y = \sin x y = sin x ) has a period of 2ฯ \pi ฯ , an amplitude of 1, and a vertical shift of 0
The cosine function (y = cos โก x y = \cos x y = cos x ) has a period of 2ฯ \pi ฯ , an amplitude of 1, and a vertical shift of 0
The tangent function (y = tan โก x y = \tan x y = tan x ) has a period of ฯ \pi ฯ , undefined values at odd multiples of ฯ 2 \frac{\pi}{2} 2 ฯ โ , and a vertical shift of 0
Transformations of trigonometric functions include changes in amplitude, period, phase shift, and vertical shift
Amplitude is controlled by a vertical stretch or compression factor a a a in a sin โก x a \sin x a sin x or a cos โก x a \cos x a cos x
Period is affected by a horizontal stretch or compression factor b b b in sin โก b x \sin bx sin b x or cos โก b x \cos bx cos b x
Phase shift is a horizontal shift of the function, as in sin โก ( x โ h ) \sin(x - h) sin ( x โ h ) or cos โก ( x โ h ) \cos(x - h) cos ( x โ h )
Vertical shift moves the function up or down, as in sin โก x + k \sin x + k sin x + k or cos โก x + k \cos x + k cos x + k
Inverse Trigonometric Functions
Inverse trigonometric functions "undo" the original functions and are denoted with sin โก โ 1 \sin^{-1} sin โ 1 , cos โก โ 1 \cos^{-1} cos โ 1 , and tan โก โ 1 \tan^{-1} tan โ 1 or arcsin โก \arcsin arcsin , arccos โก \arccos arccos , and arctan โก \arctan arctan
The domain of inverse trigonometric functions is limited to ensure they are one-to-one
sin โก โ 1 \sin^{-1} sin โ 1 has a domain of [-1, 1] and a range of [ โ ฯ 2 , ฯ 2 ] [-\frac{\pi}{2}, \frac{\pi}{2}] [ โ 2 ฯ โ , 2 ฯ โ ]
cos โก โ 1 \cos^{-1} cos โ 1 has a domain of [-1, 1] and a range of [0, ฯ \pi ฯ ]
tan โก โ 1 \tan^{-1} tan โ 1 has a domain of all real numbers and a range of ( โ ฯ 2 , ฯ 2 ) (-\frac{\pi}{2}, \frac{\pi}{2}) ( โ 2 ฯ โ , 2 ฯ โ )
Inverse trigonometric functions can be used to solve equations like sin โก x = 1 2 \sin x = \frac{1}{2} sin x = 2 1 โ by applying the inverse function to both sides
Trigonometric Identities and Equations
Pythagorean identities relate the squares of trigonometric functions: sin โก 2 x + cos โก 2 x = 1 \sin^2 x + \cos^2 x = 1 sin 2 x + cos 2 x = 1 , 1 + tan โก 2 x = sec โก 2 x 1 + \tan^2 x = \sec^2 x 1 + tan 2 x = sec 2 x , and 1 + cot โก 2 x = csc โก 2 x 1 + \cot^2 x = \csc^2 x 1 + cot 2 x = csc 2 x
Angle addition and subtraction formulas express the sine, cosine, or tangent of a sum or difference of angles in terms of the individual angles
sin โก ( x ยฑ y ) = sin โก x cos โก y ยฑ cos โก x sin โก y \sin(x \pm y) = \sin x \cos y \pm \cos x \sin y sin ( x ยฑ y ) = sin x cos y ยฑ cos x sin y
cos โก ( x ยฑ y ) = cos โก x cos โก y โ sin โก x sin โก y \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y cos ( x ยฑ y ) = cos x cos y โ sin x sin y
tan โก ( x ยฑ y ) = tan โก x ยฑ tan โก y 1 โ tan โก x tan โก y \tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} tan ( x ยฑ y ) = 1 โ t a n x t a n y t a n x ยฑ t a n y โ
Double-angle formulas express trigonometric functions of double an angle in terms of the original angle
sin โก 2 x = 2 sin โก x cos โก x \sin 2x = 2 \sin x \cos x sin 2 x = 2 sin x cos x
cos โก 2 x = cos โก 2 x โ sin โก 2 x = 2 cos โก 2 x โ 1 = 1 โ 2 sin โก 2 x \cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x cos 2 x = cos 2 x โ sin 2 x = 2 cos 2 x โ 1 = 1 โ 2 sin 2 x
tan โก 2 x = 2 tan โก x 1 โ tan โก 2 x \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} tan 2 x = 1 โ t a n 2 x 2 t a n x โ
Half-angle formulas express trigonometric functions of half an angle in terms of the original angle
sin โก x 2 = ยฑ 1 โ cos โก x 2 \sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} sin 2 x โ = ยฑ 2 1 โ c o s x โ โ
cos โก x 2 = ยฑ 1 + cos โก x 2 \cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} cos 2 x โ = ยฑ 2 1 + c o s x โ โ
tan โก x 2 = ยฑ 1 โ cos โก x 1 + cos โก x = sin โก x 1 + cos โก x \tan \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{\sin x}{1 + \cos x} tan 2 x โ = ยฑ 1 + c o s x 1 โ c o s x โ โ = 1 + c o s x s i n x โ
Applications and Problem Solving
Trigonometry has applications in various fields, such as physics, engineering, and navigation
Right triangle trigonometry can be used to solve problems involving heights, distances, and angles
The sine, cosine, and tangent functions relate the sides and angles of a right triangle
The angle of elevation is the angle between the horizontal and the line of sight to an object above the observer
The angle of depression is the angle between the horizontal and the line of sight to an object below the observer
Trigonometric functions can model periodic phenomena, such as sound waves, tides, and planetary orbits
The law of sines and the law of cosines extend trigonometry to non-right triangles
The law of sines states that a sin โก A = b sin โก B = c sin โก C \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} s i n A a โ = s i n B b โ = s i n C c โ for a triangle with sides a a a , b b b , and c c c and angles A A A , B B B , and C C C
The law of cosines states that c 2 = a 2 + b 2 โ 2 a b cos โก C c^2 = a^2 + b^2 - 2ab \cos C c 2 = a 2 + b 2 โ 2 ab cos C for a triangle with sides a a a , b b b , and c c c and angle C C C opposite side c c c
Common Pitfalls and Study Tips
Remember the order of operations when evaluating trigonometric expressions (PEMDAS)
Be careful with the signs of trigonometric functions in different quadrants
Memorize the common angles and their sine, cosine, and tangent values in the unit circle
Practice identifying the period, amplitude, phase shift, and vertical shift of transformed trigonometric functions
When solving trigonometric equations, consider the domain and range of the functions involved
Sketch diagrams to visualize problems involving angles, distances, and heights
Understand the relationships between trigonometric functions and their inverses
Practice applying trigonometric identities to simplify expressions and solve equations
Review the proofs of trigonometric identities to deepen your understanding of the concepts
every AP exam is fiveable go beyond AP ยฉ 2025 Fiveable Inc. All rights reserved. APยฎ and SATยฎ are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website. every AP exam is fiveable go beyond AP
ยฉ 2025 Fiveable Inc. All rights reserved. APยฎ and SATยฎ are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.